Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I.

نویسندگان

  • Zhaoyang Ye
  • Hangyu Zhang
  • Hanlin Luo
  • Shunkang Wang
  • Qinghan Zhou
  • Xinpeng DU
  • Chengkang Tang
  • Liyan Chen
  • Jingping Liu
  • Ying-Kang Shi
  • Er-Yong Zhang
  • Rutledge Ellis-Behnke
  • Xiaojun Zhao
چکیده

It has been found that the self-assembling peptide RADA 16-I forms a beta-sheet structure and self-assembles into nanofibers and scaffolds in favor of cell growth, hemostasis and tissue-injury repair. But its biophysical and morphological properties, especially for its beta-sheet and self-assembling properties in heat- and pH-denatured conditions, remain largely unclear. In order to better understand and design nanobiomaterials, we studied the self-assembly behaviors of RADA16-I using CD and atomic force microscopy (AFM) measurements in various pH and heat-denatured conditions. Here, we report that the peptide, when exposed to pH 1.0 and 4.0, was still able to assume a typical beta-sheet structure and self-assemble into long nanofiber, although its beta-sheet content was dramatically decreased by 10% in a pH 1.0 solution. However, the peptide, when exposed to pH 13.0, drastically lost its beta-sheet structure and assembled into different small-sized globular aggregates. Similarly, the peptide, when heat-denatured from 25 to 70 degrees C, was still able to assume a typical beta-sheet structure with 46% content, but self-assembled into small-sized globular aggregates at much higher temperature. Titration experiments showed that the peptide RADA16-I exists in three types of ionic species: acidic (fully protonated peptide), zwitterionic (electrically neutral peptide carrying partial positive and negative charges) and basic (fully deprotonated peptide) species, called 'super ions'. The unordered structure and beta-turn of these 'super ions' via hydrogen or ionic bonds, and heat Brownian motion under the above denatured conditions would directly affect the stability of the beta-sheet and nanofibers. These results help us in the design of future nanobiomaterials, such as biosensors, based on beta-sheets and environmental changes. These results also help understand the pathogenesis of the beta-sheet-mediated neuronal diseases such as Alzheimer's disease and the mechanism of hemostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 99: Self-Assembling Peptide Scaffolds as New Therapeutic Method in TBI: Focused on Bioactive Motifs

Traumatic brain injury (TBI) is a common reason of brain tissue loss as a result of tumors, accidents, and surgeries. Renewal of the brain parenchyma is restricted by many reasons such as inimical substances produced as the result of trauma and also inflammatory responses. A strong cascade of inflammatory responses begins as a result of TBI which include recalling peripheral leukocytes into the...

متن کامل

A self-assembling peptide RADA16-I integrated with spider fibroin uncrystalline motifs

Mechanical strength of nanofiber scaffolds formed by the self-assembling peptide RADA16-I or its derivatives is not very good and limits their application. To address this problem, we inserted spidroin uncrystalline motifs, which confer incomparable elasticity and hydrophobicity to spider silk GGAGGS or GPGGY, into the C-terminus of RADA16-I to newly design two peptides: R3 (n-RADARADARADARADA-...

متن کامل

The Effect of Self-Assembling Peptide RADA16-I on the Growth of Human Leukemia Cells in Vitro and in Nude Mice

Nanofiber scaffolds formed by self-assembling peptide RADA16-I have been used for the study of cell proliferation to mimic an extracellular matrix. In this study, we investigated the effect of RADA16-I on the growth of human leukemia cells in vitro and in nude mice. Self-assembly assessment showed that RADA16-I molecules have excellent self-assembling ability to form stable nanofibers. MTT assa...

متن کامل

O13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats

Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...

متن کامل

CD44+/CD24− breast cancer cells exhibit phenotypic reversion in three-dimensional self-assembling peptide RADA16 nanofiber scaffold

BACKGROUND Self-assembling peptide nanofiber scaffolds have been shown to be a permissive biological material for tissue repair, cell proliferation, differentiation, etc. Recently, a subpopulation (CD44(+)/CD24(-)) of breast cancer cells has been reported to have stem/progenitor cell properties. The aim of this study was to investigate whether this subpopulation of cancer cells have different p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of peptide science : an official publication of the European Peptide Society

دوره 14 2  شماره 

صفحات  -

تاریخ انتشار 2008